

Ravi Mishra Sr Consulting Engineer, Email: <u>ravi@tlv.co.in</u> Phone: 9999179465

TLX: INDIA PRIVATE LIMITED

TLV Introduction

Established in 1950 in Kakogawa, Japan

3 Times Winner of METI Award for Energy Conservation System

Innovation : Free Float Steam Traps

Higher Efficiency

Modulating Discharge No Condensate Back up Better Temp Control

High Air Venting Capacity

Rapid Air venting Quick Startup Extremely High-Pressure Applications

TO MAXIMIZE ALL OF THE REQUIREMENTS OF A PROCESS STEAM TRAP'S FUNCTION Functions Required of Process Traps

mproved Heating Efficiency and Production Quality

TLV's free float immediately adjusts the valve opening to perfectly match the amount of entering condensate. Condensate is continuously discharged, so no condensate backs up into equipment allowing process temperature to be maintained.

he Optimal Air Vent for Any Application

The JX and JH series offer a variety of air vents and venting devices to offer an optimized solution for any application. From rapid air venting to extremely high-pressure applications, TLV offers an air vent to fit even the most demanding needs.

Steam System Optimization Program

Peace of Mind through Steam System Optimization

8

MISSION is to Help

Build a Low Carbon Society and Create "Peace of Mind" in plants through

Steam System Optimization Program[®] Steam System Optimization Program

SSO

A Sustainable Asset Management Program

which Improves Safety, Reliability & Profitability by Continuously Optimizing Performance of the Entire Steam System through Visualization based on "Condition Monitoring and Timely Consulting & Engineering Services" to Minimize Condensate Problems, Energy Losses and CO₂ Emissions

As of April 30th 2024

SSOP Results

(188 Plants in Japan)

CO₂ Emissions Reduction Approx.

Equivalent to 0.8 % of CO₂ reduction target for 2024 (vs 2005)

2005: 1.397 billion t-CO₂/y

t/h

Achieved a cost reduction of 100.5 mil. SGD/y

Steam Loss Reduction

Approx.

Potential Steam Savings:

Oil Refineries & Petrochemical Plants:

(Steam generation: approx. 640 t/h *)

General Industrial Plants:

(Steam generation: approx. 4-40 t/h *)

SSOP[®] Can Help Your Plant...

Reduce CO₂ Emissions

- Stop steam loss
- Improve energy efficiency

Improve Safety, Reliability

- · Eliminate problems caused by condensate
- Eliminate water hammer
- Prevent unexpected equipment failures
- Improve equipment longevity

Increase Profitability

- Increase production efficiency
- Reduce operating expenditure
- Mitigate production bottlenecks

Reduce CO₂ Emissions

Increase

Profitability

Improve Safety, Reliability Total Plant Steam Generation Final Flowmeter-verified Measurement : ~ 760 t/h

: 19 t/h (2.5% of total) Reduction

How is plant steam managed?

"We know how much we generate, but that's about it..."

Production Process Managed Precisely Often Not Managed Steam Steam System Optimization Generate significant value from efficient use of steam

Typical Scenes from a Steam Plant

Principles of Steam Utilization

- 1 Supply "dry steam" at the optimal pressure and flow rate
- 2 Discharge generated condensate quickly without leaking steam
- **3** Fill steam-using equipment with steam at all times

Is steam being used in an optimum state?

There is a problem with the current definition of assets

Steam Plant

Stand-alone management of equipment is inadequate

Contributing to Safe & Stable Plant Operation

Steam is an Asset

The Structure of SSOP®

Phase S

How can the entire steam system be optimized?

Create optimum balance with the entire steam system treated as a valuable asset.

How can all SA (Steam Applications such as steam-using equipment, tracing) be optimized?

Newly define everything from steam supply to condensate discharge as an asset.

How can all CDLs (ex. 10,000) be optimized?

Phase

Necessary conditions for the steam system to function.

Phases of Steam System Optimization:

Consulting · Engineering · Service

The Structure of SSOP®

How can the entire steam system be optimized?

Create optimum balance with the entire steam system treated as a valuable asset.

equipment, tracing) be optimized? How can all SA (Steam Applications such as steam-using

Define everything from steam supply to condensate discharge as a new asset.

Phase

TMS (Trap Management System)

- ⇒ Eliminate Problems Caused by Condensate
- ⇒ Reduce Steam Loss

Create nfras<u>tructure</u>

Condensate Discharge Location (CDL®) Management Program

TLS TNS

Trap Management System TMS Survey

TMS Survey

TrapMan_® Has Been Independently Validated as "Objective" & "Reliable"

Verified Diagnoses in 5 Operating Statuses for 17 Typical Trap Models

STATEMENT Kohu Date: 23-June 2002 This contribute is issued to TLV Co., Ltd. to certify that the undersigned Surveyor to Lloyal's Begister dal at the request of TLV Co., Ltd., attend their corporate loadquarties in Kalogassa. Hyogo-Pref., Japan on # have 2002 and subsequently for the purpose of examining and verifying TrapMana for Automatic Steam Traps - Judgment Accuracy TM5 with version 9 true codes TrapManager-version 3.0 TLY Co., Inf. Trapman optipment manufactured by Test Method Reference TLV ErapMane Judgment Validation Appropriate International Stendard for Test Arrangement of Steam Loss ISO 7841-1968 (E) The operation of Traphlan equipment was examined and its ability to make correct judgments on various kinds of shum trap operation was investigated based on the actual shum low measured on a test arcangenaut complying with the relevant requirements of ISO 7841 : 1988 (E) as recognized by a Summor to Lloyd's Register The results of this examination and verification clearly validate TrapMan judgments to be suitable for use in diagoning steam may operation status in steam plants, provided that the TrapMan equipment beproperly calibrated and maintained. Each copy of the accompanying documentation has been endersed by the undersigned. or to Lloral's Basist

Certificate per 1008/024042/1

Page 1 of 1

775 Certified Inspectors

All inspectors are certified professionals

TMS Survey

Database Establishment

Condition Monitoring

Database Analysis

CDL® Improvement Proposal

Zero Reset Maintenance

Database Update

Database Establishment

Condition Monitoring

Database Analysis

CDL[®] Improvement Proposal

Zero Reset Maintenance

Database Update

Database with Characteristics of the CDL®

Database Establishment

Condition Monitoring

Database Analysis

CDL[®] Improvement Proposal

Zero Reset Maintenance

Database Update

Comprehensive Database

Detailed Inspection

Data Analysis Selection of Best Solution

Installation Information

Steam Trap Information

Valves & Other Issues

Trapping Problems

Database Establishment

Condition Monitoring

Database Analysis

CDL[®] Improvement Proposal

Zero Reset Maintenance

Database Update

Automated Analysis and Benchmarking Study

Condensate Discharge Location Management opens the door to Steam System Visualization

Database Establishment

Condition Monitoring

Database Analysis

CDL® Improvement Proposal

Zero Reset Maintenance

Database Update

TLV Best Model

Energy Efficiency

Long Service Life

Specific Application & Pressure

Database Establishment

CDL[®] Improvement Proposal

Zero Reset Maintenance

Database Update

ZRM_® Replacement Support

Eliminating all failed locations requires significant manpower and costs

Focus on replacement work efficiency

ZRM_® Replacement Support

Precise & Swift Replacement

Maintenance Support Documents

TLV. 775. **Refinery Unit 1 Initial Survey Report Maintenance Specifications** & TranMan[®] Logs TLV. 775. TrapMan® Logs – Failed CDL Log Failed CDL Log Report Pressure: ha netany Loss: Shy

Database Establishment

Condition Monitoring

Database Analysis

CDL[®] Improvement Proposal

Zero Reset Maintenance

Database Update

Continuous & Sustainable Optimization

The Structure of **SSOP**_®

How can the entire steam system be optimized?

Create optimum balance with the entire steam system treated as a valuable asset.

- **BPSSM**® (Best Practice of Steam System Management)
- ⇒ Safety, Reliability & Productivity Improvements
- ⇒ Recover and Re-use Condensate and Waste Heat

至代多でBLM物教まれら、はのな話をやどう最適化するのか?

素気的方式のを機能でもくるたちのの必要発生のsat ⇒ Reduce Steam Loss Optimize Steam Applications

Phase 2: Steam Applications

Survey Implementation in 1 ~ 2 weeks

The Structure of SSOP®

Steam System Balance

- ⇒ Steam System (Electricity & BFW) Balance Optimization
- ⇒ Steam Load & Generation Balance Optimization

BPSSM® (Best Practice of Steam System Management)

⇒ Safety, Reliability & Productivity Improvements
⇒ Recover and Re-use Condensate and Waste Heat

王代与CBLM 例 知 group of the provident ひとう最適化するのか?

蒸集的方示点是機能的色易地象の必要案件ensate ⇒ Reduce Steam Loss Steam Syste

Optimize

Phases:3 Steam System Balance

Barriers that inhibit the optimization of Condensate Discharge Locations

There are more than 10,000 condensate discharge locations in an average petroleum refining plant

Efficient and sustainable systems are needed.

2 The existing "**Stereotype**" that, "Steam traps are consumables, so cheaper is better".

By considering the characteristics of each CDL_®, a selection that delivers energy efficiency, long service life, and excellent life cycle cost should be made.

Steam traps are seen as a matter for the maintenance team, not for Top Management.

Investment and budgeting from the viewpoint of asset management, is needed.

Thank you