

Processes and Key points for forming JCM projects

Masayoshi FUTAMI Principal Researcher Overseas Environmental Cooperation Center, Japan

September 03, 2024

- 1. The role of OECC roles on the JCM
- 2. Key points for forming JCM projects
- 3. Good practices of JCM projects
- 4. Success factors for forming JCM projects

1. The role of OECC on the JCM

1. The role of OECC on the JCM

Information dissemination on the JCM

STORY HIGHLIGHTS Article 6 of the Parts Agreement on cooperative approaches offers opportunities for Parties to voluntarily cooperate to promote NDC implementation, sustainable development and environmental integrity.

Sharing of various JCM basic information

http://carbon-markets.env.go.jp/eng/index.html

A REAL PROPERTY AND A REAL

Video production for good practices of the JCM

1. The role of OECC on the JCM

Support for Validation and Verification of JCM projects

Project Participant	Submission of PIN*	
Joint Committee	Confirmation of no objection	
Project Participant / Each Government Joint Committee	Submission of Proposed Methodology	
Joint Committee Approval of Proposed Methodology		
Project Participant	Development of PDD*	
Third Party Entities	Validation	
Joint Committee	Registration	
Project Participant	Monitoring	
Third Party Entities	Verification	
Joint Committee decides the amount Each Government issues the credit	Issuance of credits	

Source: Government of Japan

2. Key Points for forming JCM projects

Priority technologies of the JCM

- Solar power generation
- > Wind power generation
- Geothermal power generation
- Hydro power generation
- ➤ Waste to energy

- Storage battery & Electric grid system
- Energy-saving infrastructure
- Hydrogen technology
- Carbon Capture and Storage
- Ammonia fuel

2. Key Points for forming JCM projects

Is it profitable as a business? (Business feasibility / sustainability)

Zhang, Xueqing. (2009). Win–Win Concession Period Determination Methodology. Journal of Construction Engineering and Management-asce - J CONSTR ENG MANAGE-ASCE. 135. 10.1061/(ASCE)CO.1943-7862.0000012.

- ✓ Establishment of an environmental business model including securing all necessary licenses and permissions
- <u>Robustness of business return on</u> <u>investment</u> while securing revenue source such as Power Purchase Agreement (PPA)
- ✓ <u>Financial arrangement</u> including loan with appropriate interest rates

2. Key Points for forming JCM projects

Utilization of advanced technologies toward decarbonization society

The JCM recommends the introduction of advanced technologies

Digital power mitigation

Green hydrogen

Pollutants emission = 0 CO₂ emission = 0

NIES supercomputer

3. Good practices of JCM projects

OECC has been successfully supported the project development for 26 projects

Year	Partner country	Technology introduced and project boundary	GHG reduction (tCO2/year)
2020	Myanmar	7.3MW Solar PV in Mandalay International Airport and Yangon City	3,276
2020	The Philippines	2MW Solar PV at Shopping Mall (JCM Eco Lease Scheme)	1,476
2020	^{ase3} Vietnam	2MW Solar PV for Pellet Factory	1,024
2019	The Philippines	Biogas Power Generation and Fuel Conversion Project in Pineapple Canneries	52,156
2019	Mongolia	Fuel Conversion by Introduction of LPG Boilers to Beverage Factory	5,781
2018	Mongolia	21MW Solar PV in Bayanchandmani	27,008
2017 C	ase1 Mongolia	20MW Solar PV in Darkhan City	22,927
2017	Mongolia	15MW Solar PV in New Airport Suburb	18,438
2017	Indonesia	Absorption Chiller at Chemical Factory	1,084
2017	The Philippines	1.2MW Solar PV at Refrigerating Warehouse	838
2017	The Philippines	1.53MW Solar PV at Auto Parts Factories	1,124
2017 🤇	ase2 Laos	Amorphous Transformers in Nationwide Power Grids	2,099
2017	Viet Nam	Amorphous Transformers in Southern and Central Power Grids II (phase 4)	1,469
2016	Thailand	1.5MW Solar PV and EMS at Paint Factory	1,344
2016	<u>Cambodia</u>	800kW Solar PV project at International School	772
2016	ase2 <u>Mongolia</u>	8.3MW Solar PV at Farm in Ulaanbaatar Suburb	10,580
2016	<u>Viet Nam</u>	Amorphous Transformers in Northern, Central and Southern Power Grids (phase 3)	2,098
2015	<u>Mongolia</u>	10MW Solar PV in Darkhan City	14,746
2015	Mongolia	2.1MW Solar PV at Farm in Ulaanbaatar Suburb	2,707
2015	Bangladesh	High Efficiency Loom at Weaving Factory	1,518
2015	Bangladesh	340kW PV-diesel Hybrid System at Fastening Manufacturing Plant	265
2015	<u>Viet Nam</u>	Amorphous Transformers in Southern and Central Power Grids (phase 2)	3,564
2014	<u>Viet Nam</u>	Amorphous Transformers in Southern Power Grids (phase 1)	610

Case I: Increasing solar power generation for NDC

*JCM related Contribution for NDC in Mongolia: 76 MW *Private Investment PV Project by the trigger of successful JCM projects: 55MW

Case2: Transferring & replicating low-carbon technologies

Case3: Promoting large-scale GHG emissions reduction by Biogas Generation

- ✓ Robustness of payback strategies of decarbonization project
- ✓To close alignment with eager project participants both local and Japanese side
- ✓ To simplify the methodology to calculate GHG emission reduction and synchronize the operation parameter

Thank you for your attention!

CARBON MARKETS EXPRESS

http://carbon-markets.env.go.jp/eng/index.html

https://www.oecc.or.jp/en/about/