

### JOINT CREDITING MECHANISM AND ITS BENEFIT FOR MONGOLIA





## Mitigation contribution by sectors

NDC



## Mitigation contribution by sectors

NDC



## **NDC TARGETS**

#### (Unconditional + Conditional measures)



Total GHG mitigation potential (including conditional measures)

-20,188.1 Gg CO<sub>2</sub>-eq.

27.2%

Total GHG mitigation potential from unconditional measures -16,888.1 Gg CO<sub>2</sub>-eq.

Total GHG mitigation potential from conditional measures -3,300.0 Gg CO<sub>2</sub>-eq.

Deploy Carbon Capture and Storage (CCS) technology

-3,288.0 Gg CO<sub>2</sub>-eq.

 Construct power plant to produce energy capturing and purifying landfill methane gas from the Narangiin enger waste disposal site in Ulaanbaatar city

-12.0 Gg CO<sub>2</sub>-eq.

### **NDC TARGETS**

(Unconditional + Conditional measures + Forest sink)



**Total GHG mitigation potential** (including conditional measures and forest sink) -22,768.7 Gg CO<sub>2</sub>-eq. **Total GHG mitigation potential** from unconditional measures -16,888.1 Gg CO<sub>2</sub>-eq. **Total GHG mitigation potential** from conditional measures -3,300.0 Gg CO<sub>2</sub>-eq. Total enhancement of forest removal

– 2,580.6 Gg CO<sub>2</sub>-eq.

44.9%

- Sustained removals during the forest degradation - 1,623.0 Gg CO<sub>2</sub>-eq. reduction process

- Sustained removals during the forest deforestation – 908.3 Gg CO<sub>2</sub>-eq. reduction process
- Natural growth-related removals in the area prevented from forest degradation – **49.3 Gg CO<sub>2</sub>-eq.**

## JCM PROJECTS ARE BEING IMPLEMENTING IN

## MONGOLIA



#### PROJECTS PLANNED TO BE IMPLEMENTED BY THE JCM:

Improving Access to Health Services for Disadvantaged Groups Investment Program at Khan-Uul district's general hospital, Ulaanbaatar city

Energy efficiency projectsRenewable energy projects

#### JCM PROJECTS EMISSION REDUCTION (AS OF 2020)

| N⁰ | PROJECT NAME                                                                                                | STARTED<br>DATE<br>(year/month)    | COMPLETED<br>DATE<br>(year/month) | TOTAL ENERGY<br>PRODUCTION<br>(Kw/h)            | TOTAL<br>POWER<br>SUPPLY<br>(Kw/h) | INTERNAL<br>USE (Kw/h) | CO2<br>REDUCTION<br>(T/CO2) |
|----|-------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|-------------------------------------------------|------------------------------------|------------------------|-----------------------------|
| 1  | DARKHAN 10 MW SPP                                                                                           | 2016/2                             | 2017/1                            | 15,850,138                                      | 15,736,419                         | 113,719                | 12,850                      |
| 2  | MON NARAN 12.7 MW<br>SOLAR FARM                                                                             | 2016/9                             | 2017/8                            | 16,493,078                                      | 15,246,752                         | 244,013                | 12,507                      |
| 3  | KHUSHIG VALLEY 15<br>MW SPP                                                                                 | 2017/6                             | 2019/6                            | 24,218,621                                      | 23,848,332                         | 370,289                | 19,302                      |
| 4  | HOB - 118 <sup>th</sup> SCHOOL OF<br>ULAANBAATAR                                                            | 2013/7                             | 2014                              | 19,581 GJ                                       | 19,581 GJ                          | None                   | 62                          |
| 5  | Upgrading and Installation<br>of Centralized Control<br>System of<br>High-efficiency HOB in<br>Bornuur soum | 2013/7                             | 2014                              | 39,211 GJ                                       | 39,211 GJ                          | None                   | 102                         |
| 6  | Fuel Conversion by<br>Introduction of LPG Boilers<br>to Beverage Factory,<br>Ulaanbaatar                    | 2019/10<br>started<br>construction | 2020/8                            | By steam:<br>3589,7 GJ<br>By water: 404.8<br>GJ | 2195,3 GJ<br>404.8 GJ              | 1394,3 GJ              | 5781                        |

#### JCM PROJECTS CREDIT ISSUANCE / CO2 REDUCTIONS

JCM partnership document is signed by 17 countries. Currently, a total of 18,311 t-CO2e credits issued for Mongolia whereas so far 10 countries have been issued 90,710 t-CO2e credits for the 38 projects.

|              |           | Credit issuance (1 credit =t-CO2e) |        |                                  |  |  |  |
|--------------|-----------|------------------------------------|--------|----------------------------------|--|--|--|
| Country      | Year      | Total                              | Japan  | Project implementer (by country) |  |  |  |
| Indonesia    | 2016-2020 | 56,254                             | 36,614 | 19,650                           |  |  |  |
| Mongolia     | 2016-2018 | 18,311                             | 14,647 | 3,664                            |  |  |  |
| Vietnam      | 2017-2019 | 4,415                              | 2,691  | 1,724                            |  |  |  |
| Palau        | 2016-2018 | 881                                | 659    | 222                              |  |  |  |
| Thailand     | 2018-2020 | 4,032                              | 2,017  | 2,015                            |  |  |  |
| Laos         | 2019      | 207                                | 174    | 33                               |  |  |  |
| Maldives     | 2019      | 152                                | 78     | 77                               |  |  |  |
| Kenya        | 2021      | 486                                | _      | 486                              |  |  |  |
| Cambodia     | 2020      | 92                                 | 92     | -                                |  |  |  |
| Saudi Arabia | 2020      | 3074                               | 3074   | -                                |  |  |  |

### **RENEWABLE ENERGY DEVELOPMENT IN MONGOLIA**



Promoting renewable energy generation @Mongolia



Mongolia's renewable energy and mitigation targets

**[Renewable energy target]** Increasing renewable electricity capacity from 7.62% in 2014 to 25% by 2025 and to 30% by 2030.

\*National Green Development Policy (2014), Sustainable Development Vision 2030 (2016)

[Mitigation target] Reducing 22.7% (16.9 MtCO2) GHG emission by 2030 compared to the BAU scenario. (8.34 MtCO2 reduction in energy production sector) \*NDC (2020)



## JCM CONTRIBUTION TO THE CLEAN ENERGY DEVELOPMENT

#### AS OF TODAY, TOTAL INSTALLED RENEWABLE ENERGY CAPACITY OF MONGOLIA IS 272.7 MW.



AS OF TODAY, 16 % of JCM FINANCED PROJECTS ARE CONTRIBUTING TO THE MONGOLIAN CLEAN ENERGY POWER PRODUCTION.

•MN004- 10MW Solar Power Plant project in Darkhan City:

#### Total amount of credits issued in 2017

8947 T-CO2



15 MW Solar Power Plant project located in Khushig Valley, Tuv province:

Expected GHG emission reduction /per year/ 18438 T-CO2 Expected power generation /per year/ 30.1 million KWh





## CONTRIBUTES TO SDG'S

"Sustainable Development Contribution Plan and Report" document is approved by the Joint Committee in 2018. All JCM projects must complete this document.

#### Case 2: 12.7 MW Solar Farm project.

The purpose of this project is to reduce CO2 emission, mitigate air pollution and stabilize power supply in Mongolia by installing 12.7MW scale solar power plants in the suburbs of Ulaanbaatar.

GHG emission reduction is – 8880 t/CO2. Credit issued in 2018.



Moreover, lots of achievements in daily life, mitigating air pollution, resolving power shortage, food supplying, etc., can be expected by synergy of agricultural and solar power generation technology.

- Introducing solar energy in the power system reduces GHG emission; and increasing clean, affordable, and sustainable energy in the country
- Building resilient and sustainable infrastructure in Mongolia; and strengthening developing country's technological capacity to move towards more sustainable production
- Increasing solar power generated electricity reduces coal consumption in a power plant; reducing air pollution
- Mobilizing financial and technical support from different sources and encourages public and private participation







•MN003- Installation of 12.7 MW Solar Power Plant in Ulaanbaatar suburb Farm:

#### Total amount of credits issued in 2018

8880 T-CO2



## Solar panels in farm to empower women @Mongolia





Principles for achieving the sustainable social development: Ensure gender equality in social development, and create a pleasant environment for equal participation in social welfare. \*Source: Mongolia Sustainable Development Vision 2030 (2016)

## SUPPORTS MONGOLIA'S EFFORTS TO ADDRESS AIR POLLUTION

CASE 1: Upgrading and Installation of Centralized Control System of High-efficiency Heat Only Boiler in Bornuur soum



- Centralized control system
- High-efficiency heat only boilers
- Improvement of boiler efficiency reduces coal consumption, CO<sub>2</sub> emissions, and other air pollutants
  Lower emissions from heating system









Figure 3. BEFORE: DZL (16 ton/hour steam boiler)

The result of MCS Coca Cola boiler as of 2020: Heat produced by steam 3589 GJ Heat produced by hot water 409 GJ CO2 emission reduction - 5781 tCO2e Figure 4. AFTER: DAEYEOL (4 boiler with a steam capacity of 3.4 tons), NTEC (8 boiler with a heating capacity of 0.63 GCal/h)

Photo source: MCS International; Otgontsetseg L

## **GHG** emissions reduction options in the energy supply sector

#### Use of renewable energy sources:

- ≻Hydro energy 686 MW
- ➢Solar energy 350 MW
- ► Wind energy 320 MW
- TOTAL 1356 MW /in 2030 /

# Efficiency improvement of electricity and heat production:

- Reduce the electricity and heat transmission and distribution grid losses
- Reduce the heat distribution losses of centralized heating system
- Reduce the internal use of thermal power plants
- Apply super critical and ultra-super critical pressure technology for the newly build coal combustion power plants;

National NDC Roadmap Development and National Long-term development Vision -2050 NDC action plan and government principal development actions 2020-2025



- Mongolia's NDC submission to UNFCCC
  - UNFCCC related decisions
  - NDC Roadmap development at National level

# NET ZERO EMISSION & CLIMATE RESILIENCE

## HIGH-LEVEL NATIONAL FORUM ON THE SUSTAINABLE DEVELOPMENT GOALS

4 OCTOBER 2021



#### PRE-COP26 WORKSHOP ON GREENING MONGOLIA'S DEVELOPMENT 21 OCTOBER 2021



#### **CONCLUDING REMARKS**

- JCM projects in Mongolia are contributing substantially to the implementation of the upgraded NDC in respect of mitigation by reducing GHG emission.
- Most of JCM projects in Mongolia have co-benefit effects contributing to the adaptation activities as well, including, for instance, abatement of air pollution and other negative human healthy factors.
- Almost every JCM project has a certain sustainable development element, promoting the preservation of precious resources like water and other nonrenewable resources.
- Improvement of the working environment at the JCM supported innovative heat and electricity producing facilities and more healthy living environment around those facilities, thanks to reduced ash, black carbon and other air and soil pollutants truly can be considered as an essential contribution to the quality of life of local communities.
- Added value of the JCM projects in Mongolia is more attributed to the technology transfer and know-how diffusion rather than financial support and in that sense a scope of JCM projects and field of cooperation within JCM can be extended, without complex decision making arrangements
- Coverage of the new field of cooperation within JCM scheme and engagement in an innovative technology development for transformative change, particularly in the energy sector (new energy source like green hydrogen or ultra high efficiency in distribution and use of energy etc.) can be initiated in cooperation with other multi and bilateral cooperation mechanisms on climate change.
- Well coordinated activities of the stakeholders engaged in the JCM scheme of cooperation, taking into account the limited human resource in countries like Mongolia would lead to a great synergy, yielding tangible outcomes.

# THANK YOU!

# www.jcm-mongolia.com



