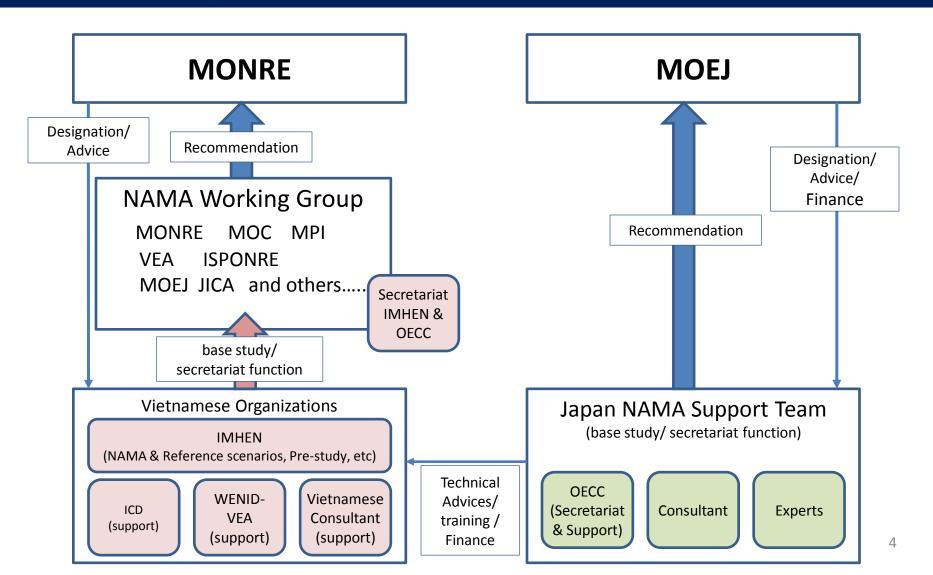
Capacity-building on Development of NAMAs in a MRV manner in the Waste Sector in Vietnam

November 26, 2012

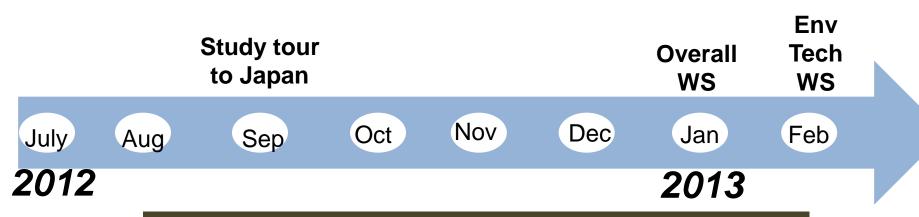
Dr. Huynh Thi Lan Huong, Director, Climate Change Research Center, Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN) Ministry of Natural Resources and Environment, Vietnam

Mr. Makoto Kato, Principal Researcher Overseas Environmental Cooperation Center (OECC) Ministry of Environment, Japan

Outline


- 1. Background of capacity-building cooperation
- 2. Implementation Framework
- 3. Steps for GHG Quantification and consideration on MRV
- 4. Achievements, lesson learned and challenges
- 5. Way Forward

1. Background of capacity-building cooperation


- At COP17 in Doha, the MONRE, Vietnam, supported by other ministries, and the MOEJ generally agreed to launch capacity-building on NAMAs in a MRVable manner;
- February 2012, "Workshop on NAMAs in a MRVable manner" was held in Hanoi, Vietnam, and experts discussed key issues in the Vietnam's context and decided to choose waste as the target sector for the fiscal year 2012;
- July 2012, an inter-ministerial WG on NAMA/MRV in the waste sector has been established;

2. Implementation Framework

Working Group on NAMAs in a MRV manner in the Waste Sector

Schedule

Act 1. Identify BL and NAMA scenario in waste sector

Act 2. Draft Guideline for NAMA selection in waste sector

Act 3. Draft a Guideline for MRV of NAMAs in waste sector

Act 4. Draft a Modality for Institutional Arragement for NAMA implementation in waste sector

Act 5. Collection information on technology to be employed in waste sector

Side event COP18

Steps for NAMAs Design

(1) Collection of Info on relevant policies and strategies

Collect and analyze relevant policy documents of development, climate change and related sector

(3) Quantification GHG emissions of BAU

Quantify GHG emissions based on (2) data, and a) Identify the calculation formulas

- b) Calculate respective emission in BAU
- c) Aggregate respective emissions

(5) Quantification GHG emission reduction by NAMAs

Quantify GHG emissions with (4)NAMAs assumptions

- a) Set the calculation formulas
- b) Calculation
- c) Aggregate potential with reduction by NAMAs

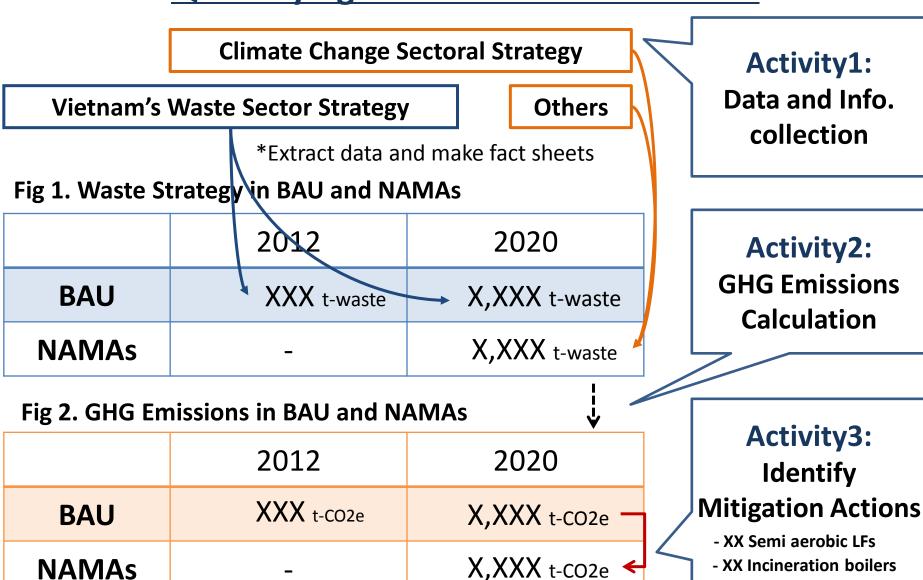
(2) Collection data for BAU in the sector

Collect data for calculating BAU emission with bottom-up approach (eg. List all individual landfills, and collect respective waste volumes)

(4) Examination and selection of NAMAs options

Select possible NAMAs options and technologies based on (1) policies and mitigation strategies and additional consideration.

Low-carbon technology survey


Examination MRV methods

Capacity-buildings in Vietnam for NAMAs implication

Source: OECC 2012

3. Steps for GHG Quantification and consideration on MRV

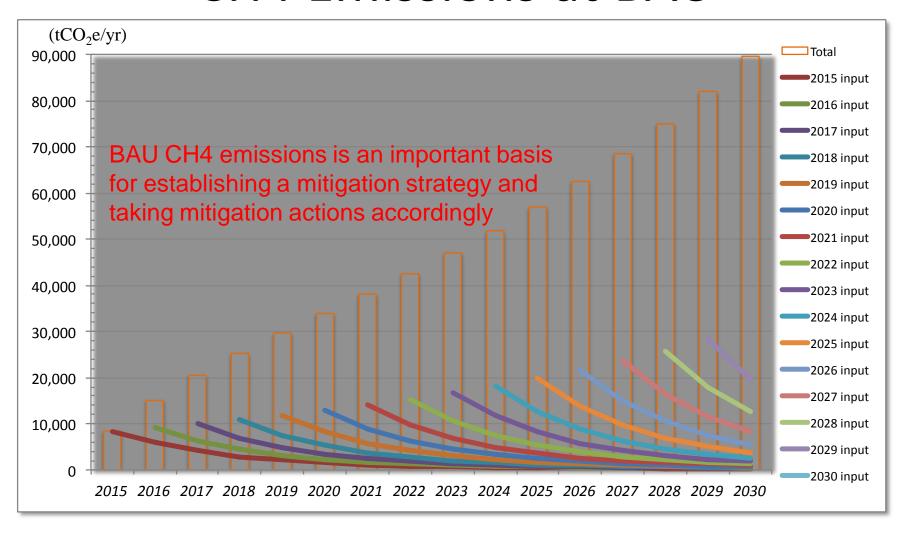
Quantifying GHG Emissions Reduction

Baseline Emissions Formula

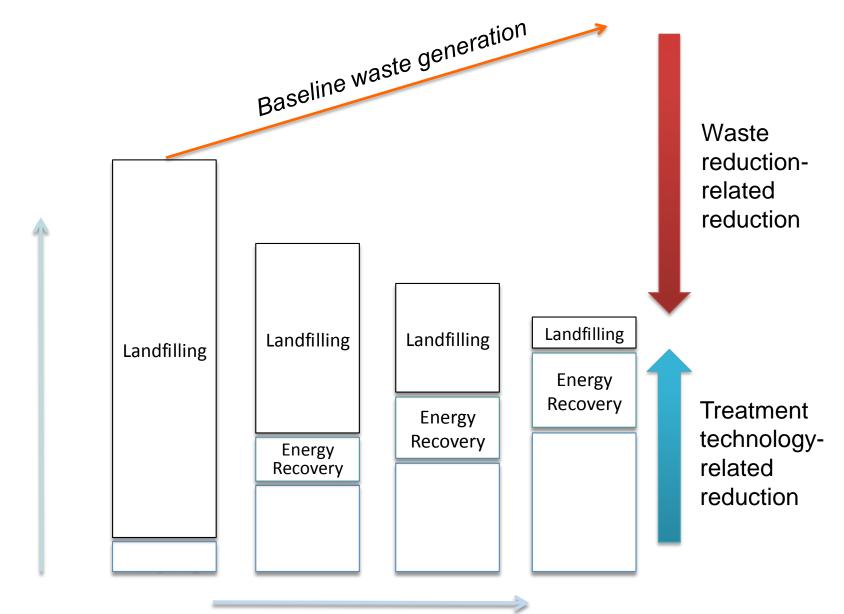
amount of organic wastes

decay curve of degradable wastes

$$BE_{y} = f \times (1 - f) \times GWP_{\text{CH4}}(1 - Ox) \times \frac{16}{12} \times Frac \times DOC_{f} \times MCF \times \mathop{\mathring{a}}_{t=y_{0}} \mathop{\mathring{a}}_{j} A^{BL}_{j,t} \times DOC_{j} \times (1 - e^{-k_{j}}) \times e^{-k_{j} \times (y - t)}$$

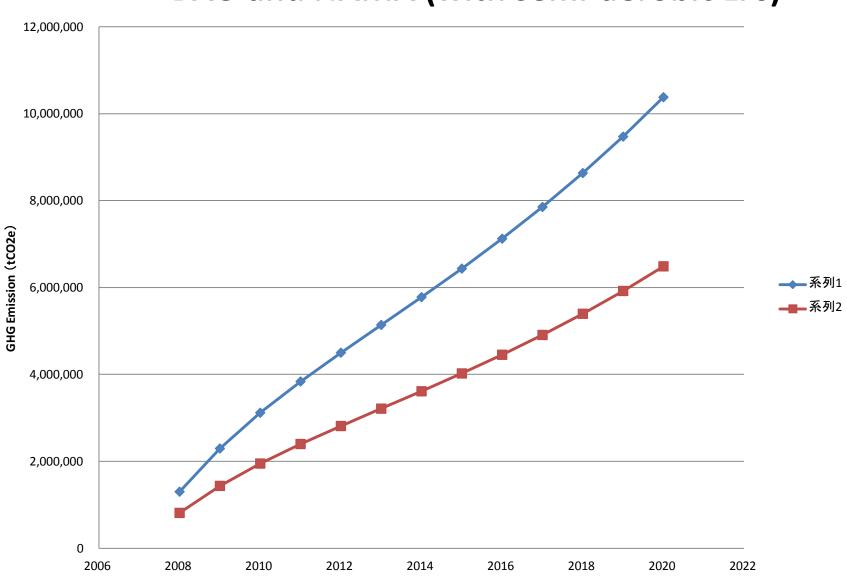

```
Model correction factor
                 Methane captured factor (IPCC default)
                 Global Warming Potential of methane (IPCC AR4)
GWP_{CH4}
    Ox
                 Oxidization factor of methane (IPCC defaul)
        1.3333 CH<sub>4</sub>/C molecular ratio
 16/12
          0.5
                 Fraction of methane in SWDS gas (IPCC default)
  Frac
                 Fraction of degradable organic carbon (DOC) decomposable (IPCC default)
 DOC_f
          0.5
                 Methane correction factor for "unmanaged deep >5m" SWDS (IPCC default)
 MCF
          0.8
                 Baseline annual amount of organic wastes of type j in year t. A^{BL}{}_{i,t} = A_t * \%A_i
  A^{BL}_{i,t}
 DOC_i
                 DOC content of waste type j (table)
                 Waste type
                 Methane generation rate of waste type j (table)
(1-e^{-kj})
                 Constant for calculation of geometric series over t
                 Start year of the targeted waste disposal
     y_0
                 Target year considered
```

CH4 Emissions at BAU

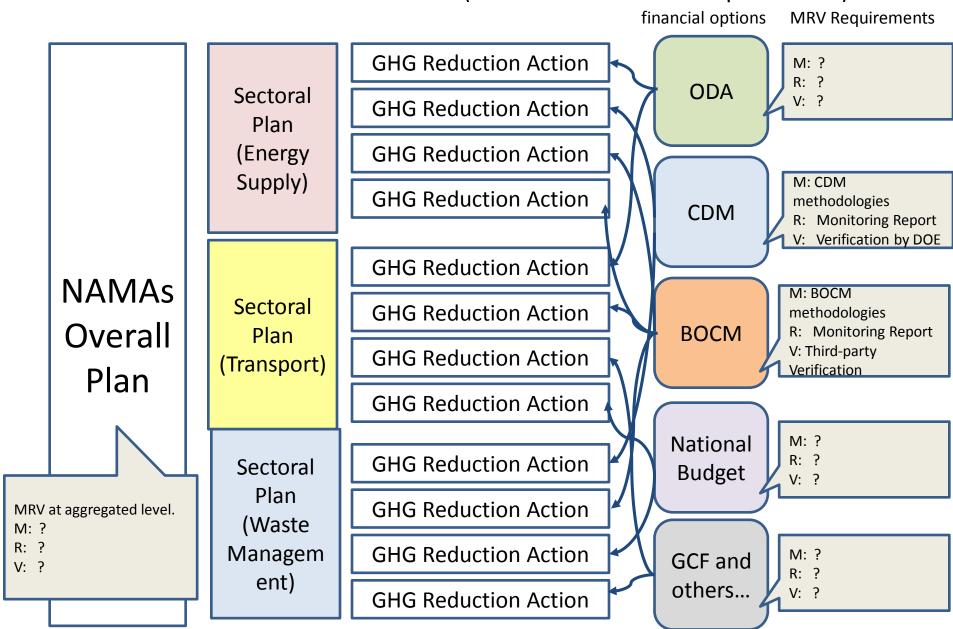

(preliminary calculation/ all LF CH4 aggregated)

Annual input													
waste total	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
A_{ϵ}	6,177,136	6,609,131	7,203,953	7,852,309	8,559,017	9,329,328	10,168,968	11,084,175	12,081,751	13,169,108	14,354,328	15,646,218	17,054,377
Growth rate	9.0%												
	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
2008	1,300,739	903,304	634,160	451,299	326,529	240,919	181,753	140,486	111,368	90,529	75,359	64,096	55,547
2009	1	1,391,706	966,477	678,510	482,861	349,365	257,767	194,464	150,311	119,157	96,860	80,630	68,579
2010	1		1,516,959	1,053,460	739,576	526,318	380,807	280,966	211,966	163,839	129,881	105,578	87,886
2011	1			1,653,485	1,148,271	806,138	573,687	415,080	306,253	231,043	178,584	141,570	115,080
2012	1				1,802,299	1,251,615	878,690	625,319	452,437	333,816	251,836	194,657	154,311
2013	1					1,964,506	1,364,261	957,772	681,598	493,157	363,859	274,502	212,176
2014	1						2,141,311	1,487,044	1,043,971	742,941	537,541	396,607	299,207
2015	1							2,334,030	1,620,878	1,137,929	809,806	585,919	432,301
2016	1								2,544,092	1,766,757	1,240,342	882,689	638,652
2017	1									2,773,060	1,925,765	1,351,973	962,131
2018	1										3,022,636	2,099,084	1,473,651
2019	1											3,294,673	2,288,002
2020	1												3,591,194
BE Total	 	2,295,010	3,117,596	3,836,754	4,499,535	5,138,860	5,778,276	6,435,160	7,122,874	7,852,227	8,632,470	9,471,977	10,378,716
	,												

CH4 Emissions at BAU



Source: Climate Experts



Source: Climate Experts

Preliminary Comparison between BAU and NAMA (with semi-aerobic LFs)

Think pieces for the Relationship between NAMA Overall Plan and respective NAMAs with different finances (and associated MRV requirements)

4. Achievements, lessons learned and challenges

Achievements and Lessons:

- General steps/approaches for NAMA development have been sorted out;
- Preliminary GHG quantification for BAU and NAMA have been done.

Challenges:

 How to build upon the existing data collection and reporting system

5. Way Forward

<Near Term Actions>

- Accuracy of breakdown of activity data (ie waste volume in respective landfills) should be improved.
- •The secretariat will draft the implementation plan, including MRV at individual entity/project level, and MRV at policy level

<Longer Term Actions>

- •Reporting system of the waste-related data should be strengthened.
- •MRV at policy level need to be self-reviewed by the Government of Vietnam.

Thank you!