

Carbon Forum Asia 2012 October 31st 2012, Bangkok Introduction to Japan's Experiences in Mitigation Actions & Application for NAMAs in a MRV manner

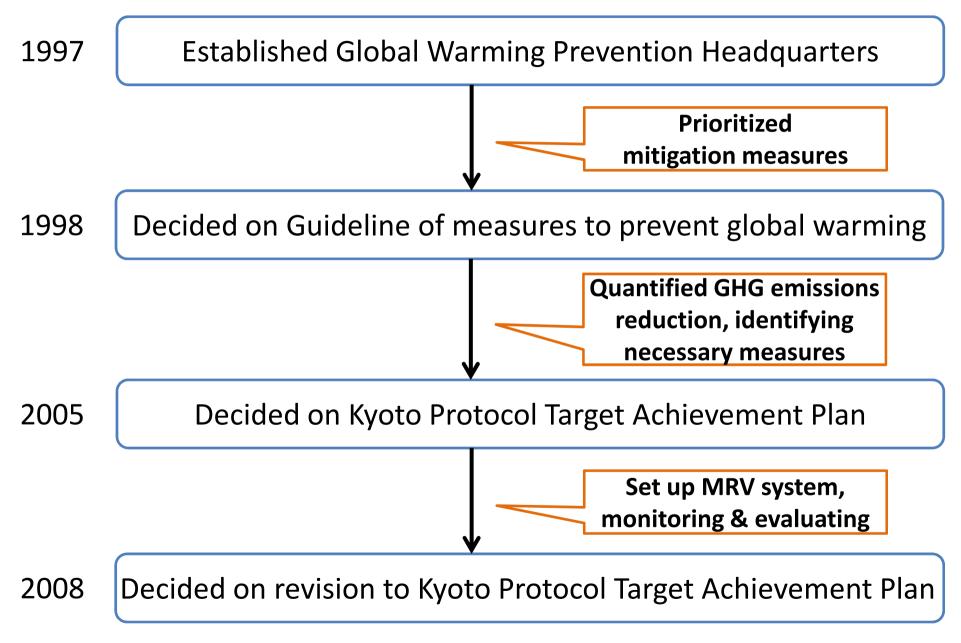
OECC, Researcher Emi Kaneko

Outline

Part I : Japan's Experiences in Mitigation Actions and Quantifying GHG Emissions mitigation

Part II: Step Towards NAMAs Development in other Asian countries

Part I: Japan's Experiences in Mitigation Actions and Quantifying GHG Emissions mitigation


1-1. Our finding: Keys to developing NAMAs

1. Wide Sector coverage:

>> Prioritize mitigation action aligned with national development policy

- Various emission targets:
 > Quantify GHG emissions reduction, identifying reference level (BAU) and mitigation potential
- Broad range of type of action:
 > Set up MRV system, clarifying stakeholders' roles and responsibilities for implementing actions (ministries, provinces, etc.)

1-2. Japan's Experience in Mitigation Actions

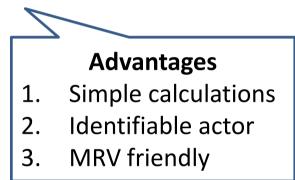
1,280 1,260 1,240 1,220			-1.8% ~ -0.8% reduction with nitigation measures
(million t-CO2)	1990	2010	
	1990 (Base year)	2010 (Target year)	Emissions reduction
Energy-originated CO2	1,059	1,076~1,089	<u>+1.3%~+2.3%</u>
Energy conversion	68	66	-0.1%
Industry	482	424~ 428	-4.6%~-4.3%
Residential	127	138~ 141	+0.9%~+1.1%
Others (Incl. office)	164	208~ 210	+3.4%~+3.6%
Transport	217	240~ 243	+1.8%~+2.0%
Non energy-originated CO2, CH4, N2O	151	132	<u>-1.5%</u>
3 Fluorinated Gases	51	31	<u>-1.6%</u>
Total	1,261	1,239~1,252	<u>-1.8%~-0.8%</u>

Example: Mitigation Measure

Sector	Mitigation measure	
Energy	Promotion of measures for new energy	
	sources	
	Promotion of biomass use	
Industry	Dissemination of high-performance boilers	
	Promotion of introduction of co-generation	
Transport	Promotion of the use of public Transportation	
	Promotion of environmentally-friendly use of	
	automobiles	
Waste	Promotion of measures to reduce CO2	
	emissions deriving from waste incineration	

Example: Calculation methods

Mitigation measure	Calculation method	Emissions reduction
Promotion of renewable energy	Use of renewable energy in target year 2010 (Expand use of solar, wind, biomass power) (36 million MWh) × Grid emission factor (0.425 t-CO2 /MWh)	15.3 million t-CO2
Dissemination of high- performance boiler	Amount of energy conserved by high-performance boilers (45 kl oil-equivalent/unit) × Cumulative numbers of boilers introduced in 2010 (11,000 units) × Emission factor (2.62 tCO2/kl)	1.3 million t-CO2


Example: Calculation methods

Mitigation measure	Calculation method	Emissions reduction
Promotion of the use of public transportation	Reduced car-kilometers per day in 2010 (0.5 car-km/day) × CO2 emission per 10,000 car-km (15,900 t-CO2/car-km) × 365 days	2.9 million t-CO2
Promotion of measures to reduce CO2 emissions deriving from waste incineration	Amount of waste incinerated by type to be degraded in 2010 (General: 822,000 t, Industrial: 1,280,000 t) × Emission factor by type (approx. 2,600 kg-CO2/t)	5.5 million t-CO2

What can be applied to NAMAs Development?

Bottom-up quantification approach

- >> Estimate GHG emissions reduction with each mitigation measure based on;
 - Use of renewable energy,
 - No. of updated equipment,
 - Reduced car-kilometer, etc.

e.g. IPCC approach (adopted to GHG inventory)

>> Estimate GHG emissions at the macro level based on energy consumption, etc.

Part II: Step Towards NAMAs Development in other Asian countries

de

2-1. Step for NAMA Design

(1) Collection of Info on relevant policies and strategies

Collect and analyze relevant policy documents of development, climate change and related sector

(2) Collection data for BAU in the sector

Collect data for calculating BAU emission with bottom-up approach (eg. List all individual landfills, and collect respective waste volumes)

(3) Quantification GHG emissions of BAU

Quantify GHG emissions based on (2) data, and a) Identify the calculation formulas b) Calculate respective emission in BAU c) Aggregate respective emissions

(4) Examination and selection of NAMAs options

Select possible NAMAs options and technologies based on (1) policies and mitigation strategies and additional consideration.

(5) Quantification GHG emission reduction by NAMAs

Quantify GHG emissions with (4)NAMAs assumptions a) Set the calculation formulas b) Calculation c) Aggregate potential with reduction by NAMAs

> Low-carbon technology survey Examination MRV methods Capacity-buildings for NAMAs implication

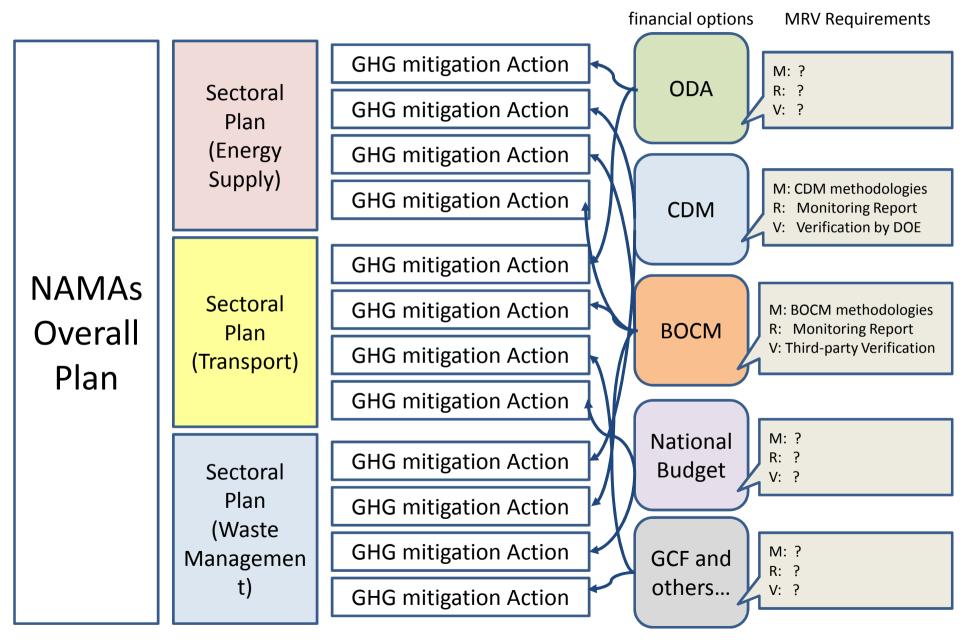
2-2. Priority sector for NAMAs Development for each countries

Sector	Priority Sector
Mongolia	 Energy Supply Sector Sub-sector: CHP(Combined Heat and Power)
Cambodia	 Energy Sector Sub-sector: Bio digester, Solar power generation
Laos	 Transport Sector Sub-sector: Low Emission Cars, Public Transportation
Vietnam	 Waste Management Sector

2-3. Example of GHG mitigation action in Laos

Sector	GHG mitigation action	
Energy	• Hydro	
	Energy Efficiency Measures	
Industry	Efficient Production System	
Transport	Introduction of Electric Vehicles	
	Promotion of Public transport Use	
Waste	Composting Organic Waste	
Agriculture	Reduce Methane Emission from Rice	
	field/Cows	
Forestry	Reforestation	
	Reduce Slash-and-burn	
	Reduce Wildfire	

2-3. Example of GHG mitigation action in Laos


Sector	GHG mitigation action	
Energy	Hydro	
	Energy Efficiency Measures	
Industry	Efficient Production System	
Transport	Introduction of Electric Vehicles	
	Promotion of Public transport Use	
Waste	Composting Organic Waste	
Agriculture	Reduce Methane Emission from Rice	
	field/Cows	
Forestry	Reforestation	
	Reduce Slash-and-burn	
	Reduce Wildfire	

2-4. Emission Calculations by selected GHG mitigation action in Laos

*All values are calculated on the assumption.

Mitigation measure	Calculation method (BAU – NAMA scenario)	Emissions reduction (year)
Development of Public Transport Service (Bus)	Private Car{Transport amount (60000 passenger-km) × EmissionFactor (25.7 kg/passenger-km)} × 365daysBus{Transport amount (60000 passenger-km) × EmissionFactor (22.7 kg/passenger-km)} × 365days	<u>Private car - Bus</u> 66,000 t-CO2
Promotion of electric vehicle for government use	Private CarNo. of car (5000) × Traveling Distance (5 km)× Emission Factor (25.7 kg/km) × 365daysElectric VehicleNo. of electric vehicle (5000) × Traveling Distance (5km) × Emission Factor (1.7 kg/km) } × 365daysPrivate Car — Electric Vehicle	<u>Private Car -EV</u> 7,939 t-CO2
More Mitigation Measures		α t-CO2
Total		82,855 +α t-CO2

2-5. Relations between NAMA Overall Plan and respective NAMAs with different finances and associated MRV requirements

Conclusion

Keys to developing NAMAs:
 > Prioritize GHG mitigation action
 > Quantify GHG emissions reduction
 > Set up MRV system

2. Japan's experience:

>> Bottom-up quantification approach

3. Step towards in Host countries

>> Information/data collection and analysis, identifying potential NAMAs, quantifying GHG emissions reduction

Thank you for listening!

Feel free to make comments and questions. <u>kaneko@oecc.or.jp</u>